Proper orientations and proper chromatic number

نویسندگان

چکیده

The proper orientation number χ→(G) of a graph G is the minimum k such that there exists an edges with all vertex-outdegrees at most and for any adjacent vertices, outdegrees are different. Two major conjectures about resolved. First it shown, planar 14. Secondly, shown every graph, , where r=χ(G) usual chromatic maximum average degree taken over subgraphs G. Several other related results derived. Our proofs based on novel notion fractional orientations.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proper connection number and connected dominating sets

The proper connection number pc(G) of a connected graph G is defined as the minimum number of colors needed to color its edges, so that every pair of distinct vertices of G is connected by at least one path in G such that no two adjacent edges of the path are colored the same, and such a path is called a proper path. In this paper, we show that for every connected graph with diameter 2 and mini...

متن کامل

Additive non-approximability of chromatic number in proper minor-closed classes

Robin Thomas asked whether for every proper minor-closed class G, there exists a polynomial-time algorithm approximating the chromatic number of graphs from G up to a constant additive error independent on the class G. We show this is not the case: unless P = NP, for every integer k ≥ 1, there is no polynomial-time algorithm to color a K4k+1-minor-free graph G using at most χ(G) + k − 1 colors....

متن کامل

The Complexity of the Proper Orientation Number

Graph orientation is a well-studied area of graph theory. A proper orientation of a graph G = (V,E) is an orientationD of E(G) such that for every two adjacent vertices v and u, d D (v) 6= d D (u) where d D (v) is the number of edges with head v in D. The proper orientation number of G is defined as −→χ (G) = min D∈Γ max v∈V (G) d D (v) where Γ is the set of proper orientations of G. We have χ(...

متن کامل

Proper Semirings and Proper Convex Functors

Esik and Maletti introduced the notion of a proper semiring and proved that some important (classes of) semirings – Noetherian semirings, natural numbers – are proper. Properness matters as the equivalence problem for weighted automata over a semiring which is proper and finitely and effectively presented is decidable. Milius generalised the notion of properness from a semiring to a functor. As...

متن کامل

Proper actions and proper invariant metrics

We show that if a locally compact group G acts properly on a locally compact σ-compact space X, then there is a family of G-invariant proper continuous finite-valued pseudometrics which induces the topology of X. If X is, furthermore, metrizable, then G acts properly on X if and only if there exists a G-invariant proper compatible metric on X.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series B

سال: 2023

ISSN: ['0095-8956', '1096-0902']

DOI: https://doi.org/10.1016/j.jctb.2023.02.003